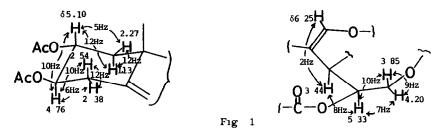
Tetrahedron Letters, Vol.23, No.7, pp 757-760, 1982 0040-4039/82/070757-04\$03.00/0 Printed in Great Britain

THE STRUCTURES OF GLAUCOGENIN-A, GLAUCOGENIN-B, AND GLAUCOGENIN-C MONO D-THEVETOSIDE FROM CHINESE DRUG "PAI-CH'IEN" CYNANCHUM GLAUCESCENS HAND-MAZZ

Takashi Nakagawa, Koji Hayashi, and Hiroshi Mitsuhashi Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060, Japan

Abstract The structures of glaucogenin-A (1), glaucogenin-B (2), and glaucogenin-C mono D-thevetoside (7) were characterized by chemical and spectroscopic evidence and that of $\underline{7}$ determined by X-ray crystallography

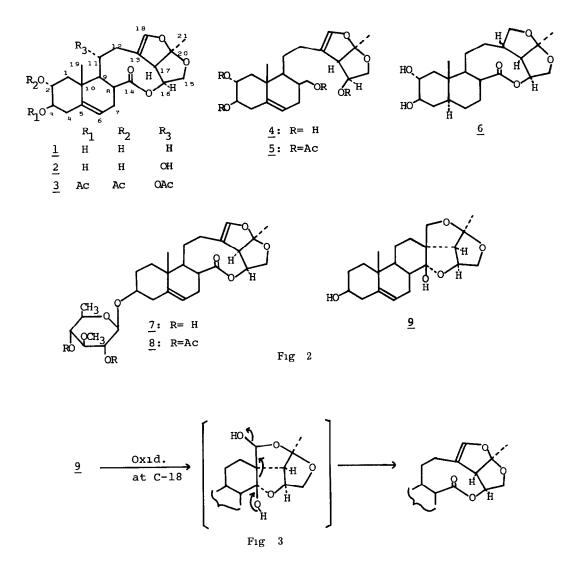

Chinese crude drug "Pai-Ch'ien"¹⁾ 芜花叶前 ,dried root of Cynanchum glaucescens Hand-Mazz (Asclepiadaceae) has been used as an antitussive and expectorant in China This paper deals with the isolation and structural elucidation of three new compounds named glaucogenin-A (1), glaucogenin-B (2), and glaucogenin-C mono D-thevetoside (7) with novel 13,14 14,15disecopregnane-type skeleton

The CHCl₃ extract of this drug showed positive Liebermann-Burchard and Keller-Kiliani reactions, suggesting the presence of steroidal glycosides containing 2-deoxy sugars The hexane-benzene (1 1) and benzene soluble portions of the extract, which are rather abundant of glycosides by the color reactions, were hydrolyzed under the milder condition (0 05 N H_2SO_4 -75% MeOH, 50°, 30min) than that of usually used for glycosides of Asclepiadaceae plants.²⁾ Then the hydrolysate was subjected to repeated silica gel column chromatography to give 1, 2, and 7 It was evident that the aglycone moleties of the glycosides survived under the above acidic condition because $\underline{1}$, $\underline{2}$, and $\underline{7}$ retained the same spectroscopic features as those of the aglycone moleties of glaucoside-A, -B, -C, -D, and -E, whose structures will be reported in the separate paper, isolated from this material

Colorless needles of <u>1</u> melted at 225-231°, $[\alpha]_{D}$ +78.1° (<u>c</u>=1 07, MeOH), C₂₁H₂₈O₆ (combustion and EI-MS <u>m/z</u> 376 (M⁺)), IR(CHCl₃) cm⁻¹ 3600, 3400 (OH), 1730 (-C(=O)O-), 1710, 1655 The l H-NMR (CDCl₂) spectrum showed two tertiary methyl signals at δ 0 97 and (-C=C-O-) 1 54 (each 3H, s), two hydroxy-methine signals at δ 3 36 and 3 70 (each 1H, m), a methine proton signal at δ 3 46 (lH, dd, J=8, 2 Hz), signals attributable to protons carrying oxygen atoms at δ 3 88 (1H, dd, <u>J</u>=10, 9 Hz), 4 20 (1H, dd, <u>J</u>=9, 7 Hz), and 5 35 (1H, ddd, <u>J</u>=10, 8, 7 Hz), two olefinic proton signals at ℓ 5 50 (1H, d, J=4.5 Hz) and 6 27 (1H, d, J=2 Hz) being in good agreement with vincetogenin $^{3)}$, whose structure has not been determined yet,

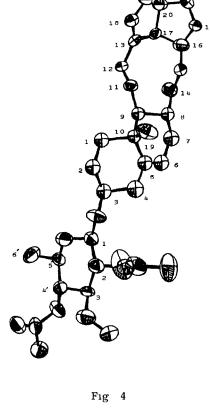
¹³C-NMR (Table I) and ¹H-NMR spectra of 1 suggested the except for its specific rotation presence of two trisubstituted double bonds and a ketal function Since 1 displayed no UV absorption corresponding to conjugated dienes or enones, its deshielded ¹H-NMR signal at δ 6 27 is ascribable to an enol ether function On treatment of $\underline{1}$ with LiAlH₄ in THF gave a tetrol (4), an oil, $[\alpha]_D$ -55 0°(<u>c</u>=1 20, MeOH), C₂₁H₃₂O₆, whose ¹H-NMR spectrum exhibited the up-field shifted signal at δ 4 52 (1H, ddd, <u>J</u>=10,8,6 Hz), and ¹³C-NMR signal at δ 71.5 (t) indicating the formation of a hydroxyl methyl group by the reduction, thus suggested the existence of a lactone The tetrol (4) furnished a tetraacetate (5), an oil, $[\alpha]_D$ -63 0° (<u>c</u>=1 17, CHCl₃), ring in l $C_{29}H_{40}O_{10}$, by acetylation in the usual manner, and the vicinity of the acetoxyl methyl group and methine carbon was inferred from its ¹H-NMR signal at δ 3.92 (1H, dd, <u>J</u>=11 5, 7 Hz) and 4 22 (1H, Catalytic hydrogenation $(H_2/PtO_2 \text{ in AcOH})$ of <u>1</u> afforded a tetrahydro dd, <u>J</u>=ll 5, 4 Hz) derivative (6), mp 217-220°, $[\alpha]_{D}$ +14 0°(\underline{c} =0.84, CHCl₃), $C_{21}H_{32}O_{6}$

Glaucogenin-B (2), mp 269-272 5°, $[\alpha]_{D}$ +135° (\underline{c} =0.23, MeOH), $C_{21}H_{28}O_7$, was denoted to bear an additional secondary hydroxyl group, compared with <u>1</u>, on the bases of its ¹³C-NMR signal at δ 67.8 (d) and yielding a triacetate (3), mp 256-258°, $[\alpha]_{D}$ +82 7° (\underline{c} =0 37, CHCl₃), $C_{27}H_{34}O_{10}$, by acetylation Proton spin decoupling experiments were carried out throughly in <u>3</u> to provide two partial structures as shown in Fig 1, being supposed to be common to <u>1</u> and <u>2</u>



The thevetoside (7), mp 187-190.5°, $[\alpha]_{D}$ +27 4°(<u>c</u>=1 03, CHCl₃), C₂₈H₄₀O₉, has similar spectroscopic features in its aglycone molety as 1 and 2On hydrolysis under a condition (lN H₂SO₄-50% MeOH, reflux for six hr), $\underline{7}$ afforded D-thevetose $\frac{4}{([\alpha]_{D} + 30^{\circ} (\underline{c}=0.4, H_{2}O))}$, While an attempt to obtain the aglycone remained unsuccessful. However, consideration of the 13 C-NMR spectrum of $\frac{7}{1}$ led us to suppose that the aglycone molety possesses the sole secondary hydroxyl The β -linkage of the sugar was indicated by the anomeric group to which the sugar linked proton signal at δ 4 35 with coupling constant 8 Hz in the ¹H-NMR spectrum of 7 Since there was no further improvement for the structures of 1, 2, and 7, an X-ray analysis was performed by using crystals of $\underline{8}$ from MeOH, the diacetate of $\underline{7}$, to determine the structure and relative stereochemistry unequivocally Crystal data Crystals of $\frac{8}{2} [C_{32}H_{44}O_{11}]$ are orthorhombic, a=19 270 (6), b=23 071 (8), c=7 155 (3) Å, V=3181 Å³, space group $P2_12_12_1$, Z=4, $D_x=1.26 \text{ g/cm}^3$, Cu- Ka radiation The structure was resolved by direct method and refined to give an R value of 0 1186⁵) The molecular structure is shown in Fig 4 The absolute configuration was determined as depicted in Fig 2 on the ground that the thevetose belongs to D series $^{4)}$

The close analogy of the spectroscopic features and the assumption of biogenetic similarity among <u>1</u>, <u>2</u>, and the aglycone molety of <u>7</u> permitted to illustrate the structure of glaucogenin-A (1)


as in Fig 2 In the ¹H-NMR spectrum of <u>3</u>, the remaining signal due to an acetoxy-methine proton appeared at δ 5 70 (1H, dt, <u>J</u>=10, 2 Hz) The rather large coupling constant (10 Hz) may be based on coupling between H_{9a} and H_{11β}, and the second coupling between H_{11β} and C-12-methylene Therefore, the structure of glaucogenin-B (2) was tentatively deduced as in Fig 2.

Compound <u>1</u>, <u>2</u>, and <u>7</u> have unprecedent skeleton namely $15,20 \alpha$ $18,20\beta$ -diepoxy-13,14 14,15disecopregna-5, 13(18) dieno-14 oic acid-16 oxy-lactone The biogenisis of the nine-membered lactone ring in them may be speculated as shown in Fig 3, starting from hirundigenin (9), followed by hydroxylation at C-18, though <u>9</u> has not been detected yet in this material. It is known that the same type of lactonization as shown in Fig 3 occurs as chemical reaction in the case of ryanodine ⁶⁾ or diterpenes in <u>Cinnamomum cassia</u> ⁷⁾

1,2,4,6, and 7					
	1	2	4	6	7
C- 1	45 5	45 3	45 9	42 9	36 6
C- 2	72 9	73 2	72 5	72 6	30 6
C- 3	76 3	76 6	76 8	76.3	78.1
C- 4	40 1	40 1	40 7	36 7	39 0
C- 5	140 9	141 6	140 8	45.6	140 7
C- 6	120 0	123 8	121 6	27 2	120 4
C- 7	30 1	23.6	28.0	28 3	30 0
C- 8	53 2	51 4	49 0	53 2	53 3
C- 9	40.4	50 3	38 2	44 5	40 7
C-10	40 4	40 1	40 4	38 7	38 7
C-11	23 9	678	28.4	$23 \ 1$	23 9
C-12	28 2	30 2	30 6	23 5	28 4
C-13	118 5	118 6	118 7	43 5	118 4
C-14	175 4	174 9	71 5	175 3	175.4
C-15	678	67 9	64.9	72 4	67 7
C-16	75 5	75 8	74 2	73.4	75 5
C-17	56.2	56.4	55.4	51 6	56 2
C-18	143 8	144 0	141.3	70 8	143.8
C-19	$19 \ 2$	19 0	198	12 9	18 6
C-20	$114 \ 3$	114 5	115 3	116 7	114 3
C-21	24 8	24 8	25.2	24 9	24 8
C- 1'					102 4
C- 2'					75 0
C- 3'					88 0
C- 4'					75 9
C- 5'					72 6
C- 6'					179
-OMe	e				60 8

Table I ¹³C-NMR Chemical Shifts for 1,2,4,6, and 7

(in pyridine-d₅)

Acknowledgements This work was supported in part by grants from the Ministry of Education, Japanese Government (Grant-in-Aid, No 447108) We are grateful to Dr.Hon-Yen-Hsu for his help to obtain the drug and T Hori of Rigaku-Denki for X-ray analysis

References

- 1) Shie Tsung-wan, Liu Mei-law, and Luo Tzu-ching, Acta. Pharma Sinica, 7, 175 (1959)
- 2) S. Terada and H Mitsuhashi, Chem Pharm Bull., 27, 2304 (1979).
- 3) a) K Stockel, K Stocklin, and T Reichstein, <u>Helv Chim Acta</u>, <u>52</u>, 1175 (1969),
 b) <u>Idem.</u>, <u>Ibid</u>, <u>52</u>, 1403 (1969)
- T. Reichstein and E. Weiss, "Advances in Carbohydrate Chemistry" ed by M L Wolfrom, Academic Press, New York, <u>17</u>, 65 (1962)
- 5) Crystallographic co-ordinates have been deposited with the Cambridge Crystallographic Data Center.
- 6) K Wiesner, Collect Czech. Chem Commun, 33, 2656 (1968)
- 7) T Nohara, N Tokubuchi, M Kuroiwa, and I Nishioka, <u>Chem Pharm Bull</u>, <u>28</u>, 2682 (1980)

(Received in Japan 12 November 1981)